

Deep Groove Ball Bearings for High-speed Servo Motors [Type MA]

Note: Markings on the seal are not white in actual bearings.

CAT. No. 3103/E

5

Deep Groove Ball Bearings for High-speed Servo Motors [Type MA]

Grease Life

Allowable

IITA

Rotational Speed

omnad NTN Standard Bearings Low Noise

Reduced

NTN Standard Cade

A new deep groove ball bearings for high-speed servo motors (Type MA) has been added to the ULTAGE series, which has achieved long life, hgih-speed, low noise and also contributes to the environmental society.

The ULTAGE series deep groove ball bearings for high-speed servo motors (Type MA) is a next generation bearing, which has improved the durability for high-speed and rapid acceleration/deceleration and extended the life of sealed grease by optimized internal design for high-speed servo motors.

Features

1. High Speed and High Reliability

The cage is made of a resin which is excellent in self lubricating performance, and cage deformation during high-speed operation is reduced by a new high rigid design cage (**Fig.1**). It has achieved d_mn value of 1 million.

* $d_{\rm m}$ n value: $d_{\rm m}$ (rolling element pitch diameter mm) x n (rotational speed min⁻¹)

2. Extended Life of Lubricating Grease

A grease pockets (Fig. 2) are provided in the outer ring, and the grease is held near the rolling elements to improve the lubricating reliability.

The new long life grease "ME-1" for motors is adopted (Refer to Table 4 for the properties). (Achieved a life of more than 5 times, compared to general-purpose lithium grease)

3. Low Noise

Noise level is reduced by the new type resin cage. Noise level is 3 dB-A lower compared to the bearing with ribbon type metal cage.

1	Table 1	Results	of	noise	measurement

Metal wave type cage	57 dB-A
ULTAGE Product	54 dB-A

Fig. 2 Outer ring grease pocket

"ULTAGE®" (a name created from the combination of "ultimate," signifying refinement, and "stage," signifying NTN's intention that this series of products be employed in diverse applications) is the general name for NTN's new generation of bearings that are noted for their industry-leading performance.

Bearing Tolerances

	1) Inner	rina									
	,	<u> </u>				N	D				Unit : µm
		al bore neter	Deviation of mean bore diamteter		Variation of bore diameter	Variation of mean bore	Radial runout of inner ring of	Perpendicularity of inner ring face with	Axial runout of inner ring of	Deviation of a single inner ring witdth	Variation of inner ring width
	dian			gle plane	in a single plane		assembled bearing	respect to the bore	assembled bearing	inner mig maan	U U
	(m	d Im		$d_{\rm mp}$ ass 5	Vdsp Class 5	Vdmp Class 5	Kia Class 5	$S_{ m d}$ Class 5	Sia Class 5	∆BS Class 5	V _{BS} Class 5
	Over	Incl	High	Low	max	max	max	max	max	High Low	max
	30	50	0	-8	6	4	5	8	8	0 -120	5
	50	80	0	-9	7	5	5	8	8	0 -150	6
1	2) Outer	ring									Unit : µm
		l outside		ation of	Variation of	Variation of	Radial runout	Perpendicularity of	Axial runout of	Deviation of a single	Variation of
	dian	neter		e diamteter gle plane	outside diameter in a single plane	mean outside diameter	of outer ring of assembled bearing	outer ring outside surfa with respect to the fac		outer ring width	outer ring width
		D		Dmp	VDsp	VDmp	Kea	SD -	Sea	∆ cs_	Vcs
	Over	Im Incl	High	ass 5 Low	Class 5 max	Class 5 max	Class 5 max	Class 5 max	Class 5 max	Class 5 High Low	Class 5 max
	80	120	0	-10	8	5	10	9	11	Depending on the Δ_{BS}	8
	120	150	0	-11	8	6	11	10	13	allowance for d of same bearing.	8

Bearing Number

Dimensions Table

Boundary dimensions					ad ratings		Factor	Allowable rotational speed	Bearing	numbers	
	mm			dynamic k	static N	dynamic k	static gf		min ⁻¹ Grease		Non-contact
d	D	В	$r_{\rm S}$ min $^{1)}$	Cr	C0r	Cr	C0r	f_0	ZZ LLB	Shielded type	seal type
40	90	23	1.5	40.5	24.0	4,150	2,450	13.2	15,400	6308MAZZ	6308MALLB
45	85	19	1.1	32.5	20.4	3,350	2,080	14.1	14,300	6209MAZZ	6209MALLB
50	90	20	1.1	35.0	23.2	3,600	2,370	14.4	15,400	6210MAZZ	6210MALLB
50	110	27	2.0	62.0	38.5	6,300	3,900	13.2	12,200	6310MAZZ	6310MALLB
60	130	31	2.1	82.0	52.0	8,350	5,300	13.2	10,500	6312MAZZ	6312MALLB

Note 1) Minimum allowable dimension of chamfer dimension r.

Remarks: Please contact NTN for bearing part numbers for other than those indicated in the series dimensions table.

Chamfer Dimensions

\varUpsilon s min		ninal ameter	$ {r}$ s max Oľ $ {r}$ ıs max		
or		d	Radial	Axial	
$ {r}_{1S}$ min	over	incl.	direction	direction	
1.0	_	50	1.5	3.0	
1.0	50	_	1.9	3.0	
1.1	_	120	2.0	3.5	
1.1	120	—	2.5	4.0	
1.5	_	120	2.3	4.0	
1.5	120	—	3.0	5.0	
	_	80	3.0	4.5	
2.0	80	220	3.5	5.0	
	220	_	3.8	6.0	
2.1	_	280	4.0	6.5	
2.1	280	—	4.5	7.0	
	_	100	3.8	6.0	
2.5	100	280	4.5	6.0	
	280	_	5.0	7.0	

Operating Temperature Range

● -20~+120°C

$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$									
$\frac{f_0 \cdot F_a}{C_{or}}$	е	$ \overline{n} \geq e $		$\frac{F}{F}$	$\frac{r_a}{r_r} > e$				
Cor		X	Y	X	Y				
0.172	0.19				2.30				
0.345	0.22				1.99				
0.689	0.26				1.71				
1.03	0.28				1.55				
1.38	0.30	1	0	0.56	1.45				
2.07	0.34				1.31				
3.45	0.38				1.15				
5.17	0.42				1.04				
6.89	0.44				1.00				
Static	Static equivalent radial load								
$P_{\rm or}=0$				-					

Dynamic equivalent radial load

$P_{\text{or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

Abutm	Mass kg			
da Min	Max	Da Max	$r_{\rm as}$	(approx.)
48.0	54.0	82.0	1.5	0.634
51.5	55.5	78.5	1.0	0.398
56.5	60.0	83.5	1.0	0.454
59.0	68.5	101	2.0	1.070
71.0	80.5	119	2.0	1.730

Radial Internal Clearance

	Unit : µm										
Nominal bore diameter d mm		С	2	С	N	С	3	C	4	С	5
Over	Incl	min	max								
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90

Bearing Fits

Recommended fit of bearings for motors (with bearing inner ring rotation)

	Shat	't fits	Housing fits		
Bearing type	Shaft diameter mm Over Incl	Tolerance class	Housing bore diameter	Tolerance class	
Doop groovo	~ 18	j5		H6	
Deep groove ball bearings	$18 \sim 100$	k5	All sizes	or	
ban boanngo	$100 \sim 160$	m5		J6	

Allowable Rotational Speed

The allowable rotational speed refers to the rotational speed where the outer ring temperature is 80°C or less in a constant operating condition at an ambient temperature after the standard grease ME-1 is sealed at 15-20% of the space volume of the bearing, applying a preload (shaft diameter $d \ge 1$) to the bearing, and performing a run-in operation.

The increase of the bearing temperature differs by the conditions to be used (operating load, environmental temperature, rotational speed pattern, etc.). Select an allowable rotational speed as indicated in the catalog with a margin.

Please contact NTN if the rotational speed will exceed 80% or more of the limitting speed indicated in the bearing dimension table.

Technical Data

FEM Analysis

Deformation of the new MA resin type cage caused by centrifugal force at high-speeds can be suppressed, and enables stable operation.

Temperature increase test

In the test results of each ULTAGE (MA Type) bearing, the outer ring temperature was 80°C or less at a dmn value of 1 million.

Table 3 Test conditions			
Bearing part number	Preload: Fa		
6209	450N		
6210	490N		
6308	392N		
6310	490N		
6312	588N		

- (1) Radial Inner Clearance: C3
- (2) Bearing Accuracy: JIS Class 5
- (3) Sealed Grease: ME-1
- (4) Grease Amount: 15 20% (space volume) * Differs by part number
- (5) Outer ring temperature was measured after 1 hour of operation at rotational speed
- (6) Based on our test machine

Fig. 5 Results of outer ring temperature increase test

Rapid acceleration/ Deceleration durability performance

[Test conditions]

- Bearing Part Number: 6308
- Rotational Speed: 15,000 min⁻¹
- Rapid acceleration/deceleration cycle: 8 sec/cycle
 - 0→15,000 min⁻¹; 3 sec, 15,000 min⁻¹ hold; 1 sec, 15,000 →0 min⁻¹; 3 sec, 0 min⁻¹ hold; 1 sec
- Temperature: Ambient Temperature Load: *F*a=392N

[Test results]

No abnormalities after 1 million cycles of operation

Fig. 6 Internal photo of bearing after test

ME-1 Grease properties

In the ME-1 grease, a urea compound is used as a thickener, and synthetic oil as the base oil.

Table 4 Typical properties

	ME-1	Test Method
Thickener	UREA	—
Base oil	Synthetic Oil	—
Base oil viscosity, mm ² /s	60	JIS K2220.23
Worked Penetration, 60W 25°C	250	JIS K2220.7
Dropping Point, °C	250 or more	JIS K2220.8

Grease high temperature durability

Fig. 7 Results of high temperature durability test

Table 3 Test conditions