

D1 Servo Drive

HIWIN_® INDUSTRIE 4.0 Best Partner

Linear Motor Stage Semiconductor / Precision /

- Automated Transport /
- Automated Optical Inspection (AOI)
- Planar Servo Motor • Air Bearing Platform
- X-Y Stage
- Gantry Systems
- Single-Axis Linear Motor Stage

Linear Motor

Machine Tool / Semiconductor / Touch Panel / Laser Manufacturing Machine / Glass Cutting Machine

- Iron Core Linear Motor--LMSA,
- LMSA-Z, LMFA, LMFC, LMFP Series Ironless Linear Motor--LMC Series

Tubular Motor--LMT Series

Torque Motor & Direct Drive Motor

Machine Tools / Semiconductor / Lithium-ion Battery / Laser Marking / Wafer Dicing

 Torque Motor--TM-2 / IM-2, TMRW Series Display / Automation / Semiconductor / Lithium-ion Battery / Robot / Laser Marking / Automated Optical Inspection (AOI) Industry Direct Drive Motor--DMS, DMY, DMN, DMT Series

Linear Actuator /

Servo Actuator

- Medical / Automation / Electric Servo Press / Barrier-free Equipment Industry Servo Actuator--LAA Series Linear Actuator--LAM, LAS, LAN,
- LAC Series

Controller / Drive / AC Servo Motor PCB / Display / Machine Tools /

Semiconductor / Automated / Food / Automated Optical Inspection (AOI) Industry Controller--HIMC

- Drive--E1, E2, D1, D2T Series
- AC Servo Motor--

E1 Series, FR Series, abi Series

Position Measurement System

PCB / Woodworking / Automation / Warehouse Automation Programmable Industry

- High Resolution--PM-A, PM-B, PM-C
- Signal Translator
- High Performance Counter

Multi-Axis Robot

Pick-and-Place / Assembly / Array and Packaging / Semiconductor / Electro-Optical Industry / Automotive Industry / Food Industry

- Articulated Robot
- SCARA Robot Flectric Gripper
- Integrated Electric Gripper

Medical / FPD • KK, SK

- KS, KA
- KU, KE, KC

Ballscrew Precision Ground / Rolled

- Super S Series
- Super T Series
- . Mini Roller
- Ecological & Economical Lubrication Module E2
- Rotating Nut (R1)
- Energy-Saving & Thermal-Controlling (Cool Type)
- Heavy Load Series (RD)
- Ball Spline

Torque Motor

Rotary Table

- Medical / Automotive Industry / Machine Tools / Machinery Industry
- RAB Series RAS Series
- RCV Series
- RCH Series
- Linear Guideway

- Quiet Type--QH, QE, QW, QR
 Other--RG, E2, PG, SE, RC

• EFEM

Semiconductor Subsystem

Semiconductor / LED / Panel (Equipment Front End Module)

D1 Series Drive

Contents

1. Features							
	rnational Safety Standard 2						
4. Overall Wiring	4.1 Wiring Diagram						
5. Drives	5.1 Basic Specifications						
6. Accessories	6.1 Motor Power Cable156.2 Feedback Signal Cables156.3 Control Signal Cables166.4 RS232 Communication Cable166.5 Accessory Pack of Connector166.6 EMC Accessory Pack176.7 Other Accessories19						
7. Motor Line-up							
8. Selection Guide	8.1 Motor Sizing						
9. Linear Motor Requirements List							

1. Features

Excellent Performance

The D1 drive attains high positioning performance to compliment the motion control technology of the semiconductor industry. The D1 drive achieves very good following characteristics and effectively shortens the positioning time.

Simple Operation

Human-machine interface provides very simple settings. All standard types of motors and encoders are built inside. Setup can be completed with just one-click.

Complete Tool Sets

There are test interfaces for speed and acceleration protection settings, gain settings, and an I/O test. Plus the D1 drive has a complete filter, frequency analysis, Bode plot, Lissajous figures and other functions which provide a complete drive control program.

Easy Integration

HIWIN provides positioning modules, motors, and the best servo drive solution from mega-fabs. According to customer's requirements we can integrate all that are required for user's easiness of application.

Services

Through HIWIN's complete global presence, we can provide immediate technical services at any time.

EtherCAT

The D1 series delivers the high performance amplifier with EtherCAT interface

2. Application international Safety Standard

		Drive	Motor
EC Directives	EMC Directives	EN55011 EN61000-6-2 EN61000-6-4 EN61800-3	EN55011 EN61000-6-2 EN61000-6-4
	Low-Voltage Directives	EN61800-5-1	EN60034-1 EN60034-5
UL		UL508C CSA C22.2 N0.14-13	UL1004-1 UL1004-6

3. Order Code

Column	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Example	D	1	-	3	6	-	S	2	-	2	-	0	-	0	0
Product D1 Peak Current 9A 18A 36A				=18			T	T							
EtherCAT(CoE EtherCAT(med Encorder Type Standard(Ana	36A =36 Interface														
Resolver	Standard(Digital) =3 Resolver =4 <u>Voltage range</u> 1Φ/3Φ 220V=2														
Heat sink type Without external heat sink															
Reserved Standard	Reserved Standard=00														

4. Overall Wiring

mega-fabs D1 Servo Drive

- Digital amplifier
- Field oriented control
- Intuitive Lightening interface
- 100-240VAC input power
- Supports Step/Direction, CW/CCW and A/B phase pulse format
- Supports analog and digital encoder

- 1 Motor Cable
- ② Encoder Cable
- ③ RS-232 Cable
- 4 Regenerative Resistor
- (5) Controller Pulse Cable

4.1 Wiring Diagram

Single-phase power (Brake without relay, using HIWIN motor)

Three-phase power (Brake without relay, using HIWIN motor)

4.2 Control Circuit

Wiring Example of Position Control Mode

- Linear Motor Stage

Descriptpion:

Wiring example of Position Mode with liner motor. Pulse command input is differential signal. - Direct Drive Motor

Descriptpion:

Wiring example of Position Mode with liner motor. Pulse command input is differential signal. - Velocity/Torque

Descriptpion:

Wiring example of Velocity/Torque Mode with liner motor.

5. Drives

5.1 Basic Specifications

Туре	Type: D1 series			D1-09-XX;D1-18-XX;D1-36-XX			
	Voltage			100 - 240 VAC ±10%			
Pov	Fred	luency		50/60 Hz			
ver l	Phas	Phase		1 Ø or 3 Ø			
Power Input	Cont	trol voltage		+24 Vdc ±10%			
	Cont	trol current		1A minimum			
ч	Continuous current		ent	D1-09:3Apk[2.12Arms] D1-18:6Apk[4.24Arms] D1-36:12Apk[8.5Arms]			
Power Output				(Note: External heat sink installed by depending on application)			
utput	Peal	k current		D1-09:9Apk[6.36Arms] D1-18:18Apk[12.7Arms] D1-36:36Apk[25.4Arms]			
	Cont	tinuous time	of peak current	1 second			
Mair	n loop	control		IGBT PWM space vector control			
Туре	Type of motor			AC servo motor, linear motor and torque motor			
State	us Non EtherCAT drive		AT drive	Red: Error; Green: Servo Ready			
LED)	EtherCAT d	rive	Red: Error; Green: RUN			
		input port		[I9,I9M][I10,I10M] Differential or I9, I10 single end input			
		Pulse comr	mand mode	Pulse/Direction; CW/CCW ; AqB			
	Positio	Maximum	differential	Pulse (2M Pulses/s max.); Quad A/B(8M counts/s max.)			
	Position mode	input frequency	Single end	Pulse:(500K Pulses/s max.); Quad A/B(2M counts/s max.)			
		Command	generator	Pulse from host controller			
*Control		Electrical g	lear ratio	Gear ratio: pulses / counts pulses:1~2147483647, counts:1~2147483647			
trol		A 1	Input resistance	10ΚΩ			
		Analog	Voltage	±10 Vdc			
	Velo		Dual wire type	I9 :PWM = 0% - 100% I10 : Direction= 1/0			
	Velocity mode	Digital	Single wire type	19 :PWM = 50% ± 50% 110: Nonfunctional			
	de		Operation range	36.5KHz minimum, 100KHz maximum			
			Pulse width limit	220 ns minimum			
		Command	generator	Voltage or PWM from host controller			

	Ъ	Analog Inpu	ıt Command	Same as velocity mode
	Torque mode		mand format	Same as velocity mode
	mod	-		
	D	Command g		Voltage or PWM from host controller
		Operation v	-	+5Vdc±5% @400mA
Enc		Digital	Input signal	A, /A, B, /B, Z, /Z, RS422 differential signal
Encoder Type		5	Bandwidth	5MHz line frequency, for AqB 20M Count/s
гц	5 H		Input amplitude	1Vp-p (Sin/Cos), different signal
De)	Analog	Bandwidth	1MHz maximum line (cycle) frequency
			Resolution	Maximum 65528 Counts/cycle
		Resolution		12 bits(equivalent to a 1024 line quadrature encoder)
Kesolver		Reference f	requency	5KHz
olver		Reference	voltage	6Vp-p
	,	Reference r	maximum current	100mA
*Out	put of	f Feedback p	ulse	Maximum 18M Count/s, RS422 differential signal output, Scaling adjustment
Hall	Hall signal			Single end signals with 120° phase difference: HA, HB, HC
•			Interface	RS232 to PC
Com	muni	cation	Protocol	Full duplex, Baud rate: 115,200bps, Binary format
1/0	Prog	10 digital in	puts	Inputs [I1~I6, I11, I12][I9,I10] -74HC14 Schmitt trigger input Note:[I9, I10] not for general purpose I/O under pulse mode
//0 interface	Programmable	3 digital out	puts	0.3Adc max, +40Vdc max (Open Drain) [01], [02], [03]
Ð	ole	Brake outp	ut	BRAKE [04], 1Adc max
		Maximum c	ode size	32K Bytes
		Variable sto	orage capacity	800 Bytes
		Support var	iable type	Floating: 32 bits Integer:16 and 32 bits; array and point
DDI	PDL Execution cy Multitasking		ycle	66.67us
PUL			g features	Execute 4Task at the same time
		instructions	5	if, else, while loop, for loop, goto and till
		Operators		Contains the basic arithmetic operators, logical operators, comparison operators
		Character l	ength limitations	variable : 17, label : 24, proc : 24

	Resistor	External					
Regen	Turn on voltage	+HV > 390 Vdc					
Circuit	Turn off voltage	+HV < 380 Vdc					
	DC Bus capacitance	940uF/9A.18A	1880uF/36A				
Protection		Short, Over voltage(> 400Vdc), Position error too big, Encoder error, Motor cable lost connection, Drive over-temperature(IGBT > 80°C ± 3°C), Motor over- temperature, Under voltage(< 60Vdc)					
	Applies to	Linear motor					
	Method	Established compensation table encoder error by linear interpo					
Error	Samples	Maximum 5,000 points					
Mapping	Storage	Flash ROM, Disc file					
	Unit	um, count					
	Activation	Activated internally by home complete, or activated externally by input signal					
functional	l frequency range of VSF	0.1Hz~200Hz					
	Operation Temperature	0~50°C (if over 55° C , air circulation is needed)					
Щ	Storage Temperature	-20°C ~65°C					
Environment	Humidity	0 to 90%RH					
nme	Elevation	Under 1000 Meters					
int	Vibration	1G (10 to 500Hz)					
IP Code		IP20					
Cooling System		Natural circulation and to install two types of heat sink					
Weight		1,250 g(min)					
Dimension	n	191.6mm X 139.8 mm X 64.8 mm					
Chassis		Compliance with U.L. Spec 94 V-0 Flammability Rating					

Note * - Only for non EtherCAT drive

5.2 Dimensions of drive

(D1-xx-xx-x-0-xx)

■ (D1-xx-xx-x-2-xx)

6. Accessories

6.1 Motor Power Cable

Part name	Туре	Model	Description				
		LMACS 🗌 D	For LMS series linear motor and motor OT cable included				
	1 :	LMACS 🗆 K	For LMCA~LMCD,LMT series linear motor and motor OT cable included				
Motor cable	Linear	LMACS 🗌 L	For LMCF series linear motor and motor OT cable included				
		LMACS 🗌 H	For LMSA series linear motor and motor OT cable included				
		LMACS 🗌 J	For LMF series linear motor and motor OT cable included				
	Torque	orque LMACS 🗆 F For TMS, TMN, TMY series torque motor					

□□ Represents cable length as the following:

	03	04	05	06	07	08	09	10
Cable length(m)	3	4	5	6	7	8	9	10

6.2 Feedback Signal Cables

Part name	Туре	Model	Description				
		LMACE 🗆 Y	For Renishaw Digital Encoder, motor OT				
		LMACE 🗌 🗌 Z	For Renishaw Digital Encoder, motor OT, and digital hall sensors				
		LMACE 🗌 🗆 C	For Renishaw Analog Encoder, motor OT				
	Linear	LMACE 🗌 J	For Renishaw Analog Encoder, motor OT, and digital hall sensors				
Encoder Cable		LMACE 🗌 AW	For Renishaw Digital Encoder, motor OT, with Encoder alarm, with Encoder alarm				
ouble		LMACE 🗌 AV	For Renishaw Digital Encoder, motor OT, and digital hall sensors, with Encoder alarm				
		LMACE 🗆 🗆 AA	For Jena Analog Encoder , motor OT. For TMS				
	Rotary	LMACE 🗌 AM	For Jena Analog Encoder , motor OT. For TMS, and digital hall sensors				
		LMACE 🗌 AU	For Dual Resolver				

□□ Represents cable length as the following:

	03	04	05	06	07	08	09	10
Cable length(m)	3	4	5	6	7	8	9	10

6.3 Control Signal Cables

Part name	Mode	l l	Description						
Control Cable	LMACK30	R For	For motion controller (about 3m long)						
	LMACK 🗌	A For	For ACS SPiiPlus SA motion controller						
□□ Represent	s cable le	ength as	the follo	owing:					
Image: Displayed state D3 D4 D5 D6 D7 D8 D9 10					10				
Cable length(m) 3			5	6		7	8	9	10

6.4 RS232 Communication Cable

Part name	Model	Description
RS232 communication cable	LMACR21D	Cable length is 2 meters long and connector type RJ11 at the drive side
Ethercat communication cable	HE00834D8400	Cable length is 0.2 meters long and connector type RJ45 at the drive side(For Ethercat communication between the drive)
Ethercat communication cable	HE00834D8500	Cable length is 3 meters long and connector type RJ45 at the drive side(For Ethercat communication between the drive)

6.5 Accessory Pack of Connector

Part name	Model	Description	Qty
Accessory Pack (without CN3) D1-CK1	AC main power connector: 4 pins and pitch 7.5mm	1	
	D1-CK1	Motor cable connector: 4 pins and pitch 5mm	1
		Regenerative resister connector: 3 Pin and pitch 7.5mm	1
		24V dc power and brake connector: 3 pins and pitch 5mm	1
		CN2 control signal connector: MDR 26P	1
	Connecter tool	2	
Accessory Pack (CN3 connector D1-CK2 included)		AC main power connector: 4 pins and pitch 7.5mm	1
	D1-CK2	Motor cable connector: 4 pins and pitch 5mm	1
		Regenerative resister connector: 3 pins and pitch 7.5mm	1
		24V dc power and brake connector: 3 pins and pitch 5mm	1
		Connecter tool	2

6.6 EMC Accessory Pack

Part name	Model	Description	Qty
EMC accessory for EMI core	EMI Core (050300400026)	EMI core KCF-130-B (EMI core can use for drive power input/output cables and signal cables to decrease noise)	1
EMC accessory	D1-EMC1 (051800200063)	Single phase filter FN2090-10-06 (051800200044) (Rated current:6A, leakage current: 0.67mA)	1
Pack for single phase		EMI core KCF-130-B (0503004000026)	2
	D1-EMC2 (051800200062)	Three phase filter FN3258-7-45 (051800200060)	1
		EMI core KCF-130-B (050300400026)	2
EMC accessory pack for three phase	D1-EMC3 (051800200083)	Single phase filter FNFN3025HL-20-71 (Low leakage current) (051800200071)	1
		EMI core KCF-130-B (050300400026)	2
EMC accessory for edge filter	MF-40-S (FF000MF11001)	Edge filter MF-40-S (Used to minimize the differential and common mode noise on the output of any D1 drive)	1

Single phase filter (D1-EMC1)

Three phase filter (D1-EMC2)

D1-DNE01B

Edge filter (MF-40-S)

Three phase filter (D1-EMC3)

• EMI core

6.7 Other Accessories

Part name	Model	Description
Regenerative	RG1	68Ω , Rated power100W and peak 500W
Heat sink	D1-H1	High profile
	D1-H2	Low profile

Regenerative resistor

7. Motor Line-up

Motor Line-up

D1-XX-X2 or D1-XX-X3 for Linear motors

LMC :

LMC-EFC1, LMC-EFC2, LMC-EFC3, LMC-EFC4, LMC-EFE6, LMCA2, LMCA3, LMCA4, LMCA5, LMCA6, LMCB2, LMCB3, LMCB4, LMCB5, LMCB6, LMCB7, LMCB8, LMCBA, LMCC7, LMCC8, LMCD4, LMCD6, LMCD8, LMCDA, LMCE4, LMCE6, LMCE8, LMCEA, LMCEC, LMCF4, LMCF6

LMS :

LMSC7, LMSC7(WC)

LMFA :

LMFA0x, LMFA1x, LMFA2x, LMFA3x, LMFA4x, LMFA5x, LMFA6x

LMSA :

LMSA1x, LMSA2x, LMSA3x, LMSACx

LMT :

LMT2D, LMT2Q, LMT2T, LMTA2, LMTA3, LMTA4, LMTB2, LMTB3, LMTB4, LMTC2, LMTC3, LMTC4, LMTD2, LMTD3, LMTD4

D1-XX-X2 for Torque motors

TMS : TMS0x, TMS1x, TMS3x, TMS7x TMN : TMNxxE

D1-XX-X4 for Absolute Resolver Torque motors

TMY : TMY4x, TMY6x, TMYAx TMN: TMNxxA

8. Selecting motor capacity guide

8.1 Motor Sizing

Start Motor Sizing

The following contents describe how to choose proper motor according to speed, moving distance, and loading inertia. The basic process for sizing a motor is:

- Decide motion profile and required parameters
- Calculate peak and continuous force
- Select motor

Symbols

- X : move distance (mm)
- T : move time (sec)
- a : acceleration (mm/s²)
- V : velocity (mm/s)
- M_L : loading (kg)
- g : gravitation acceleration (mm/s²)
- F_p : peak force (N)
- F_{C} : continuous force (N)
- F_{a} : attraction force between stator and forcer (applicable for LMS, LMF series) (N)
- F_i : inertia force (N)
- K_p : force constant (N/Arms)
- Ip : peak current (Arms)
- I_e : effective current (Arms)
- I_C : continuous current (Arms)
- V₀ : starting velocity (mm/s)

STEP 1 Decide motion velocity profile and required parameters

In order to determine the correct motor for a particular application it is necessary to be familiar with the motion equation.

Motion equation

Basic kinematics equations are described as follows:

 $V = V_0 + aT$ $X = V_0T + \frac{1}{2}aT^2$

Where V is velocity, a is acceleration, T is move time and X is move distance.

You can choose two of the four parameters (V, a, T and X) as your designed parameters, then the last two parameters can be calculated by above equations.

Motion velocity profile

1. 1/3-1/3-1/3 trapezoid profile

If the distance (X) and move time (T) have been given, the most common and efficient velocity profile for point-to-point motion is the "1/3-1/3" trapezoid curve because it provides the optimal move by minimizing the power required to complete the move. It breaks the time of the acceleration, traveling, and deceleration into three segments as shown below.

Herein the parameters are described as motion equation.

2. 1/2-1/2 triangle profile

If X and T are given, another common motion profile is the 1/2-1/2 triangle profile. The motion is divided into two parts, namely acceleration and deceleration. The second motion velocity profile is shown as follows.

The acceleration required in the first motion velocity profile is bigger than that in the second motion velocity profile; therefore, the required motor size is bigger. When choosing second motion velocity profile, the chosen motor size is smaller, however, we need to verify the DC bus of drive is bigger enough, due to the higher velocity (V_{max}).

3. Some useful equations

STEP 2 Determine peak force and effective force

The peak force can be calculated by the follow equation

 $F_p = M_L \times a_{max} + (M_L \times g + F_a) \times \mu = F_i + F_f$

Where F_i is inertia force while F_f is friction force, and μ is friction factor.

In most cases, motions are cyclic point-to-point movements. Assuming a cyclic motion shown in the following profile with a pause time of t4 second, the effective force can be calculated as following formula:

The peak current ${\rm I}_{\rm p}$ and effective current ${\rm I}_{\rm e}$ can be calculated by using motor force constant ${\rm K}_{\rm f}.$

$$I_{p} = \frac{F_{p}}{K_{f}}$$
$$I_{e} = \frac{F_{e}}{K_{f}}$$

- D1 Series Drive 25

STEP 3 Select motor by peak force and verify the current supply of motor

From the catalog of HIWIN, you can check the specifications of motor and choose an applicable motor by peak force, and then you can verify the current supply if it is fitted the specification as follows.

$$I_{p} = \frac{I_{p}}{K_{f}} < I_{p} \text{ (from specification of chosen motor)}$$
$$I_{e} = \frac{F_{e}}{K_{f}} < I_{c} \text{ (from specification of chosen motor)}$$

Regarding effective and continuous current, the ratio of I_e/I_c had better be less than 0.7 to attain some margin.

Linear motor sizing example

Е

For example, if load is 5 kg (moving mass of mechanism is 1 kg and payload is 4 kg), friction factor µ is 0.01 ,distance is 500 mm, move time is 400 ms and dwell time is 350 ms.

At first, we can calculate the V_{max}, a_{max}, F_p and F_e by the formulas described above (choose the first motion velocity profile and LMC series)

$$V_{max} = 1.5 \times \frac{X}{T} = 1.5 \times \frac{0.5}{0.4} = 1.875 \text{ (m/sec)}$$

$$a_{max} = \frac{4.5 \times X}{T^2} = \frac{4.5 \times 0.5}{(0.4)^2} = 14.06 \text{ (m/sec}^2\text{)}$$

$$F_p = M_L \times a_{max} + (M_L \times g + F_a) \times \mu$$

$$= 5 \times 14.06 + 5 \times 9.81 \times 0.01 = 70.3 + 0.49 = 70.79 \text{ (N)}$$

$$F_e = \sqrt{\frac{[(70.3 + 0.49)^2 + 0.49^2 + (70.3 - 0.49)^2] \times 0.1333}{0.4 + 0.35}}$$

$$= 41.92 \text{ (N)}$$

In this case, we can choose motor of type LMCA6 (p.48) which can provide up to 187(N)of peak force and continuous force 62(N), and the force constant is 33.8 N/A(rms). Then the current supply of motor can be determined as follows

$$I_{p} = \frac{F_{p}}{K_{f}} = \frac{70.79}{33.8} = 2.09 \text{ (Arms)} < 5.4 \text{ (Arms)}$$
$$I_{p} = \frac{F_{e}}{K_{f}} = \frac{41.92}{33.8} = 1.24 \text{ (Arms)} < 1.8 \text{ (Arms)}$$
$$\frac{I_{e}}{I_{c}} = \frac{1.24}{1.8} \times 100\% = 68.89\% < 70\%$$

8.2 Sizing a Regenerative Resistor

Gather required information

To calculate the power and resistance of the regen resistor requires information about the amplifier and the motor. For all applications, gather the following information:

- Detail of motion profile, including acceleration and velocity
- Amplifier model number
- Applied line voltage to amplifier
- Toque/force constant of the motor
- Resistance (line-to-line) of the motor windings

For rotary motor applications, gather additional information

- Load inertia seen by the motor
- Inertia of the motor

For linear motor applications, gather additional information

- Moving mass

Observe the properties of each deceleration during a complete cycle of operation

For each deceleration during the motion cycle, determine:

- Speed at the start of the deceleration
- Speed at the end of the deceleration
- Time over which the deceleration takes place

Calculate energy returned for each deceleration

The energy returned during each deceleration can be calculated by the following formulas. Rotary motor:

 $E_{dec} = \frac{1}{2} J_t (\omega_1^2 - \omega_2^2)$

 $\begin{array}{l} {\sf E}_{dec} \mbox{ (joules): Energy returned by the deceleration} \\ {\sf J}_t \mbox{ (kg m}^2 \mbox{): Load inertia on the motor shaft plus the motor inertia} \\ {\scriptstyle ϖ_1 (radians /sec): Shaft speed at the start of deceleration} \\ {\scriptstyle ϖ_2 (radians /sec): Shaft speed at the end of deceleration} \\ {\sf I}_e \ : effective current \mbox{ (Arms)} \end{array}$

Linear motor:

$$E_{dec} = \frac{1}{2}M_{t}(V_{1}^{2} - V_{2}^{2})$$

 $\mathsf{E}_{\mathsf{dec}}$ (joules): Energy returned by the deceleration

M_t (kg): Moving mass

 V_1 (meters /sec): Velocity at the start of deceleration

V₂ (meters /sec): Velocity at the end of deceleration

Determine the amount of energy dissipated by the motor

Calculate the amount of energy dissipated by the motor due to current flow through the motor winding resistance using the following formula.

$$P_{motor} = \frac{3}{4} R_{winding} \left(\frac{F}{K_{t}}\right)^{2}$$

P_{power} (watts): Power dissipated in the motor

R_{winding} (ohm): Line to Line resistance of the motor coil

- F : Force need to decelerate the motor
 - Nm for rotary applications
 - N for linear applications
- K_t: Torque constant for the motor Nm/Amp for rotary applications N/Amp for linear applications

E_{motor} = P_{motor} T_{decel} E_{motor} (joules): Energy dissipated in the motor

T_{decel} (seconds): Time of deceleration

Determine the amount of energy returned to the amplifier

Calculate the amount of energy that will be returned to the amplifier for each deceleration using the following formula

 $E_{returned} = E_{dec} - E_{motor}$

E_{returned} (joules): Energy returned to the amplifier

E_{dec} (joules): Energy returned by the deceleration

E_{motor} (joules): Energy dissipated by the motor

Determine if energy returned exceeds amplifier capacity

Compare the amount of energy returned to the amplifier in each deceleration with the amplifier's absorption capacity. The following formula is used to determine the energy that can be absorbed by the amplifier.

$$W_{capacity} = \frac{1}{2}C(V_{regen}^2 - (1.414V_{mains})^2)$$

W_{capacity} (joules): The energy that can be absorbed by the bus capacitor

C (farads): Bus capacitance

V_{regen}(volts): Voltage at which the regen circuit turns on

V_{mains}(volts): Mains voltage (AC) applied to the amplifier

Calculated energy to be dissipated for each deceleration

For each deceleration where the energy exceeds the amplifier's capacity, using the following formula to calculate the energy that must be dissipated by the regen resistor.

 $E_{regen} = E_{returned} - E_{amp}$

E_{regen} (joules): Energy that must be dissipated in the regen resistor

E_{returned} (joules): Energy delivered back to the amplifier from the motor

E_{amp} (joules): Energy that the amplifier will absorb

Calculate pulse power of each deceleration that exceeds amplifier capacity

For each deceleration where energy must be dissipated by the regen resistor, use the following formula to calculate the pulse power that will be dissipated by the regen resistor

P_{pulse} = E_{regen} / T_{decel}

P_{pulse} (watts): Pulse power

E_{regen} (joules): Energy that must be dissipated in the regen resistor

T_{decel} (seconds): Time of deceleration

Calculate resistance needed to dissipate the pulse power

Using the maximum pulse power from the previous calculation, calculate the resistance value of the regen resistor required to dissipate the maximum pulse power.

R = V²_{regen} / P_{pulse max}

R(ohms):Resistance

P_{pulse max}:The maximum pulse power
 V_{regen} :The voltage at which the regen circuit turns on
 Choose a standard value of resistance less than the calculated value. The value must also be greater than the minimum regen resistor value specified by the amplifier supplier.

Regenerative resistor sizing example

Gather required information LM ROBOTS type: LMXL1L-S37L-1200-G200 Amplifier: mega-fabs D1 DC bus capacitance: 1880uF Regen circuit turn on voltage: 390V Minimum resistance: 15Ω Moving mass: 86Kg (include payload 74 Kg) V_{max}: 2 m/s Acceleration, deceleration: 5 m/s² Power supply (AC) of drive: 220VAC Motor type: LMS37L Force constant (Kf): 68N/A(rms) R_{winding}: 2 ohms(line-to-line)

Calculate regen resistor as following step:

$$F = ma = 86 \times 5 = 430 (N)$$

$$E_{dec} = \frac{1}{2}m_{t}V^{2} = \frac{1}{2} \times 86 \times 2^{2} = 172 (joule)$$

$$P_{motor} = \frac{3}{4} \times R_{winding} \times (\frac{F}{K_{f}} \times \sqrt{2})^{2} = \frac{3}{4} \times 2 \times (\frac{430}{68} \times \sqrt{2})^{2}$$

$$= 120 (Watt)$$

$$E_{motor} = P_{motor} \times T_{decel} = 120 \times (\frac{2}{5}) = 48 (joule)$$

$$E_{returned} = E_{dec} - E_{motor} = 172 - 48 = 124 (joule)$$

$$W_{capacity} = \frac{1}{2} \times C \times (V_{regen}^{2} - (1.414V_{mains})^{2})$$

$$= \frac{1}{2} \times 1880 \times 10^{-6} \times (390^{2} - (1.414 \times 220)^{2})$$

$$= 51.98 (joule)$$

$$\therefore E_{returned} > W_{capacity}$$

$$E_{regen} = E_{returned} - E_{amp} = 124 - 51.98 = 72.02 (joule)$$

$$P_{mules} = E_{reoen} / T_{decel} = 72.02 / 0.4 = 180.05 (Watt)$$

$$P_{pulse} = E_{regen} / T_{decel} = 72.02/0.4 = 180.05 (Wat)$$
$$R = \frac{V_{regen}^2}{P_{pulse}} = \frac{390^2}{180.05} = 844.77 (ohms)$$

Because the total value of selected resistance must be less than 844.77 ohms and the power capacity must be more than 180.05 watts, we choose two resistors and connect them in series, in each resistor the resistance is 68 ohms and power capacity is 100W. The total resistance value is 136 ohms and power capacity is 200W. The resistance order number is 050100700001.

9. Linear Motor Requirements List

Date :

Company name :		Contact person :
Email		Title :
Tel: Fax:		
Industrial		Notes :
Environment	□Normal environment □Clean room,class □Other	
Stage type	Single axis XY axis Bridge type Gantry(Single drive) Gantry (Dual drive) Other	
Load(kg)or Moment of inertia(kg-m2)		
Max. Velocity(m/s) or (rad/s)		
Max. Acceleration(m/s²)or(rad/s²)		
Stroke(mm)		
Repeatability(µm)or(deg)		
Accuracy(µm)or(deg)		
Encoder type	□Analog □Pitch µm □Digital □resolution µm	
Orientation of Stage	☐Horizontal ☐Vertical ☐Laterally ☐Upside-down	
Multiple forcer	□Yes, Number : □No	
Dust-proof device	□No □Cover □Bellow	
Cable Chain	No Horizontal Vertical	
Drive voltage	□110V □220V □0therV	
Pulse format	□CW/CCW □A/B □STEP/DIR	
Application	□Point to point □Scan	
Special measurement requirement		
The information below is to be fil Recommended specification :	led out by our authorized agents.	·

Engineer :

Salesperson :

Manager :

D1 Servo Drive Technical Information

Publication Date : July 2016, first edition

- 1. HIWIN is the registered trademark of HIWIN Mikrosystem Corp.. Please avoid buying the counterfeit goods that are from unknown sources to protect your rights.
- Actual products may be different from the specifications and photos in this catalog, and the differences in appearances or specifications may be caused by, among other things, product improvements.
- 3. HIWIN will not sell or export those techniques and products restricted under the "Foreign Trade Act" and relevant regulations. Any export of restricted products should be approved by competent authorities in accordance with relevant laws, and shall not be used to manufacture or develop the nuclear, biochemical, missile and other military weapons.

HIWIN MIKROSYSTEM CORP.

No.6, Jingke Central Rd., Taichung Precision Machinery Park, Taichung 40852, Taiwan Tel: +886-4-23550110 Fax: +886-4-23550123 www.hiwinmikro.tw business@hiwinmikro.tw

Subsidiaries & R&D Centers

HIWIN GmbH OFFENBURG, GERMANY www.hiwin.de www.hiwin.eu info@hiwin.de

HIWIN JAPAN KOBE · TOKYO · NAGOYA · NAGANO · TOHOKU · HOKURIKU · HIROSHIMA · KUMAMOTO · FUKUOKA, JAPAN www.hiwin.co.jp info@hiwin.co.jp

HIWIN USA CHICAGO · SILICON VALLEY, U.S.A. www.hiwin.com info@hiwin.com

HIWIN Srl BRUGHERIO, ITALY

www.hiwin.it info@hiwin.it HIWIN Schweiz GmbH JONA, SWITZERLAND www.hiwin.ch info@hiwin.ch

HIWIN s.r.o. BRNO, CZECH REPUBLIC www.hiwin.cz info@hiwin.cz

HIWIN SINGAPORE SINGAPORE www.hiwin.sg info@hiwin.sg HIWIN KOREA SUWON, KOREA www.hiwin.kr info@hiwin.kr

HIWIN CHINA SUZHOU, CHINA www.hiwin.cn

info@hiwin.cn

Mega-Fabs Motion System, Ltd. HAIFA, ISRAEL www.mega-fabs.com info@mega-fabs.com